
J
H
E
P
0
2
(
2
0
0
6
)
0
2
4

Published by Institute of Physics Publishing for SISSA

Received: October 10, 2005

Revised: February 1, 2006

Accepted: February 1, 2006

Published: February 8, 2006

New connections between 4D and 5D black holes

Davide Gaiotto,∗ Andrew Strominger* and Xi Yin*

Center of Mathematical Sciences, Zhejiang University

Hangzhou 310027 China

E-mail: dgaiotto@fas.harvard.edu, strominger@physics.harvard.edu,

xiyin@fas.harvard.edu

Abstract: A simple equality is proposed between the BPS partition function of a general

4D IIA Calabi-Yau black hole and that of a 5D spinning M-theory Calabi-Yau black hole.

Combining with recent results then leads to a new relation between the 5D spinning BPS

black hole partition function and the square of the N = 2 topological string partition

function.

Keywords: Black Holes, Black Holes in String Theory.

∗Permanent address: Jefferson Physical Laboratory, Harvard University, Cambridge, MA, USA.

c© SISSA 2006 http://jhep.sissa.it/archive/papers/jhep022006024/jhep022006024.pdf

mailto:dgaiotto@fas.harvard.edu
mailto:strominger@physics.harvard.edu
mailto:xiyin@fas.harvard.edu
http://jhep.sissa.it/stdsearch


J
H
E
P
0
2
(
2
0
0
6
)
0
2
4

Contents

1. Introduction 1

2. M → IIA 2

3. D6-D2-D0 Entropy 3

4. Spinning black hole and topological strings 5

5. The D6-D4-D2-D0 system 5

5.1 p0 = 1 5

5.2 p0 > 1 7

A. Supergravity solutions of spinning black hole in Taub-NUT space 7

1. Introduction

Investigations of BPS black hole in string theory has shown them to be a gold mine for

deep and surprising physical and mathematical insights. In this paper we continue these

investigations in proposing and giving evidence for a simple and direct connection between

a certain BPS partition function Z5D of the general 5D spinning BPS black hole in a

Calabi-Yau compactification of M-theory and Z4D of the general 4D BPS black hole in a

Calabi-Yau compactification of the IIA theory. Invoking prior results [1] then leads to a

simple non-linear relation between Z5D and topological string partition function Ztop.

We begin in section 2 by deriving the basic 4D-5D connection. Exact 5D supersymmet-

ric solutions were found in [2] which can be described as a 5D black hole with SU(2)L spin

J3
L and M2 charges q5D

A sitting at the center of a charge p0 Taub-NUT. Since Taub-NUT

is locally asymptotic to flat R3 × S1 this implements a 5 → 4 compactification. When the

compactification radius R, a modulus of the Taub-NUT solution, becomes small the 4D

picture becomes appropriate. We show that in the 4D picture we have a black hole with

D6-D2-D0 charges (p0,
q5D

A

p0 ,
2J3

L

(p0)2
), and vanishing D4 charge pA = 0.

In section 3 we argue that an appropriate BPS partition function (i.e. index) Z should

not depend on the radius R, yielding an equality of the form Z4D = Z5D with a certain

relation between the arguments. The microscopic description for many (but not all) 5D

spinning black holes is known [3, 4]. Hence this 5D-4D relation gives a microscopic de-

scription of 4D black holes for many cases in which it had previously been unknown. As

a check these relations are found to correctly, and in a rather intricate manner, reproduce

the entropy formula at leading order.
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In section 4 we use this and a prior result [1] to give a relation of the form1

Z5D(µ) =

∣

∣

∣

∣

Ztop

(

gtop =
8π2

µ

)
∣

∣

∣

∣

2

, (1.1)

between the BPS 5D black hole partition function and the topological string partition

function. Here µ is the potential for SU(2)L spin and gtop is the topological string coupling

constant. (1.1) is quite different from the linear relation of [7, 8] between a certain 5D

BPS partition function and Ztop and involving gtop ∼ µ. Combining (1.1) with the results

of [7, 8] potentially leads to a non-trivial relation between Ztop at different points in the

moduli space.

In section 5 the result is generalized to include general D4 charge pA. From the 5D

M-theory perspective this involves turning on a four form F (4) ∼ ωNUT ∧ pAαA, where

ωNUT is a harmonic Taub-NUT two form and αA is an integral basis of harmonic Calabi-

Yau two forms. The 4D partition function for any set of D-brane charges may then be

identified with that of a spinning 5D black hole in this Taub-NUT-flux background. This

identification is again shown to intricately yield the correct leading-order entropy.

2. M → IIA

Consider p0 D6 branes wrapping a Calabi-Yau space X in a IIA string compactification.

In the M-theory picture this is described as the product of a Taub-NUT space with X:

ds2
M =

(

1 +
p0R

r

)

d~r2 + R2

(

1 +
p0R

r

)−1

(dx11 + p0 cos θdφ)2 + ds2
X − dt2 (2.1)

where x11 ∼ x11 + 4π. The Taub-NUT geometry has a U(1)L × SU(2)R isometry, where

the U(1)L generates x11 translations. The radius R here is related to the ten-dimensional

IIA coupling via

R = g
2/3
10 . (2.2)

At strong coupling, or large R, there is a large region with r ¿ R in the core of the

Taub-NUT geometry in which the 5D metric reduces to

ds2
5 =

p0R

r
(dr2 + r2dθ2 + r2 sin2 θdφ2 + r2(dx11/p0 + cos θdφ)2) − dt2. (2.3)

This is the flat metric on R4/Zp0 tensored with the time direction. For p0 = 1 we simply

have 5D Minkowski space.

Calabi-Yau compactifications of M theory to 5D admit a second set of supersymetric

solutions with U(1)L × SU(2)R isometries. These are the 5D spinning black holes [4],

characterized by membrane charges qA and angular momentum JL associated to the U(1)L
isometry. Their characteristic size rBH grows as the square root of the graviphoton charge√

Q which in turn is proportional to the membrane charge qA.

1As discussed in [1] and [5] [6] there are a number of subtleties in interpreting the 4D version of this

formula which of course also pertain here.
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Let us now suppose that
√

Q ¿ R and p0 = 1. Then we can make an approximate

BPS solution by inserting the spinning black hole at the center of the p0 = 1 Taub-NUT,

symmetries aligned, well inside the region where the R4 is flat. Aligning the symmetries

requires the black hole to be exactly at the center of the Taub-NUT. In fact an exact

solution of this form exists for all Q, R [2] and is reproduced in the appendix. Of course

for large
√

Q À R it can no longer be described as a black hole in the center of Taub-

NUT, but this is irrelevant for our purposes since the BPS quantities we consider should

be independent of R.

At distances large compared to R, this solution is effectively a spherically symmetric

black hole in a four dimensional IIA compactification carrying D6 charge p0 = 1, and D2

charge qA. In addition JL, which is the eigenvalue of U(1)L rotations, becomes propor-

tional to D0 charge q0, since U(1)L generates x11 translations. To get the proportionality

factor, consider an orbit of the asymptotic U(1)L in the S3 near the tip R4. The angu-

lar momentum in the 1-2 plane J1 and that in the 3-4 plane J2 are related to JL, JR by

J1 = JL + JR, J2 = JL − JR. An orbit of the U(1)L is a helix going along a circle in the

1-2 plane and a circle in the 3-4 plane at the same time. The wave function of angular

momentum (JL, JR = 0) picks up a factor e2πi(J1+J2) = e4πiJL as one goes around the S1

orbit. Therefore we conclude

q0 = 2JL . (2.4)

A similar construction works for integral p0 > 1. We simply take the exact 5D solution

and quotient it by the Zp0 subgroup of the U(1)L isometry, which acts freely outside the

horizon. At infinity, this quotients the Kaluza-Klein circle and changes its radius from R

to R
p0 , while the topology of the 5D horizon becomes S3/Zp0. The corresponding 4D black

hole then has zero-brane charge2

q0 =
2JL

(p0)2
. (2.5)

Moreover, since the S2×S1 at infinity over which the 4D charges are given as field strength

integrals is divided by p0, we have

qA =
q5D
A

p0
. (2.6)

3. D6-D2-D0 Entropy

The preceding classical construction suggests the quantum conjecture that the supersym-

metric partition function of a 4D black hole with D-brane charges (p0, 0, qA, q0) is directly

related to that of a Zp0 orbifold (which is trivial for p0 = 1) of a 5D black hole with

membrane charges qA and spin q0/2. A precise conjecture relating certain 4D and 5D

supersymmetric indices will be made in the next section. In this section we will check the

conjecture at the level of the leading semiclassical entropy.

2Writing the D0 charge schematically as a 4D spatial integral q0 ∼

R

d4ΣbKaTab of the U(1)L Killing

field K contracted with the stress tensor, one factor of p0 comes from the division of the domain of the

integrand, while the second comes from demanding that K be normalized so as to generate unit translations

of the Kaluza-Klein circle at infinity.
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The macroscopic entropy of a 5D spinning black hole is [9]

S5DBH = 2π
√

Q3 − J2
L, (3.1)

where Q3 = DABCY AY BY C with Y A’s satisfying 3DABCY BY C = q5D
A . A 4D black hole

is obtained by inserting this 5D black hole in the center of Taub-NUT. For the special case

p0 = 1, we identify JL = q0/2, and (3.1) becomes

S4DBH(p0 = 1) = 2π

√

Q3 − 1

4
(q0)2. (3.2)

This agrees precisely with the known 4D result for no D4 charges and p0 = 1 [10].

This is to be expected: in the reduction from 5D supergravity to 4D supergravity

the radius of the fifth dimension is identified with an appropriate combination of the 4D

scalar moduli, and the Taub-NUT radius is the asymptotic value of that scalar modulus

at infinity. The entropy of a 4D BPS black hole does not depend of the asymptotic values

of the scalar moduli at infinity.

Therefore, any microscopic accounting of a 5D black hole with charges qA directly

descends to a microscopic accounting of a 4D black hole with D6 charge p0 = 1, D4 charge

pA = 0, and arbitrary D2-D0 charges qA, q0.

Now consider p0 > 1. Dividing by p0 divides the area and hence the entropy by p0.

Therefore, in terms of the parameters JL and Q5D of the unquotiented 5D black hole the

4D entropy is

S4DBH =
2π

p0

√

Q3
5D − J2

L. (3.3)

Using (2.5) and (2.6) then gives

S4DBH = 2π

√

p0Q3 − 1

4
(p0q0)2 (3.4)

in precise agreement with the 4D entropy formula for general nonzero D0, D2 and D6

charges [10].

For p0 > 1 a microscopic accounting of 5D entropy does not descend so directly to an

accounting of 4D entropy, because we still have to understand the effect of the Zp0 orbifold

action on the dual quantum microsystem describing the black hole. The dual quantum

microsystem is not known in general so we can’t describe the orbifold action. In order

to proceed we assume a microscopic picture of the kind discovered in [3, 4], in which the

U(1)L corresponds to a conserved left-moving current of a 2D CFT. Zp0 is then an orbifold

action, and the entropy is dominated by the “long string” of the maximally twisted sector.

This effectively increases the 2D central charge by a factor of p0 so that Q3 → p0Q3. At the

same time the relation between worldvolume momentum and target space one is rescaled

as well q0 → p0q0, and we recover (3.4). With this assumption, any microscopic accounting

of a 5D black hole with charges qA directly descends to a microscopic accounting of a 4D

black hole with D4 charge pA = 0, and arbitrary D6-D2-D0 charges p0, qA, q0. In section 5

we will relax the restriction pA = 0.
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4. Spinning black hole and topological strings

We conjecture the exact relation between the partition function of 4D extremal black holes

and 5D spinning black holes, as follows

Z4D(φA, φ0) = Z5D(φA, 2φ0 + 2πi) (4.1)

where these partition functions are Witten indices of the form

Z4D(φA, φ0) = Tr′p0=1,pA=0(−1)2J3

e−φAqA−φ0q0−βH (4.2)

and

Z5D(φA, µ) = Tr(−1)2J3

L
+2J3

Re−φAqA−µJ3

L
−βH . (4.3)

Tr′ here denotes the trace over all 4D states with the overall center-of-mass multiplet

factored out3 and J3 generates a 4D spatial rotation. The 4D trace is restricted to the

sector with p0 = 1 and pA = 0. Z5D has IR divergences from black holes which fragment and

separate: we regulate these by putting them in Taub-NUT space of radius R which forces

all black holes to sit at the center (where they do not break supersymmetry),4and then

taking R → ∞. Using J3(4D) = J3
R(5D), 2q0 = J3

L(5D) and the relation Z4D = |Ztop|2
of [1] we have for Z5D

Z5D(φA, µ = 2φ0 − 2πi) = Z4D(φA, φ0) =

∣

∣

∣

∣

Ztop

(

gtop =
8π2

µ
, tA =

2πφA

µ

)∣

∣

∣

∣

2

(4.4)

Here tA are the Kähler moduli for the topological string, φ0 is understood to be real.

This relation can be generalized to p0 > 1 and/or pA 6= 0 (see the next section) but

additional assumptions are required. (4.1) seems to be the simplest of the relations between

4D and 5D black holes.

5. The D6-D4-D2-D0 system

In this section we generalize our construction to 4D extremal black hole of generic charges

(p0, pA, qA, q0).

5.1 p0 = 1

In this subsection we take p0 = 1 and then generalize to p0 > 1 in the next subsection.

Consider turning on a constant worldvolume U(1) gauge field Fworld = pAαA on a IIA D6

brane wrapping the Calabi-Yau X. The coupling of Fworld to RR potential gives an object

in 4D with charges

(1, pA, 3pApBDABC ,−pApBpCDABC). (5.1)

3In 5D, this degree of freedom is part of the background Taub-NUT geometry which is frozen.
4More precisely, the quantum wave function of a hypermultiplet has one supersymmetric ground state

corresponding to the unique normalizable self-dual harmonic two form ωNUT . An interesting generalization,

on which we hope to report, involves the supersymmetric black ring.
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Solving the attractor equations for such charges, we find simply CXA = pA, CX0 = 1

(see [11] for notation). The leading order macroscopic entropy formula [11] then gives

vanishing entropy. This is consistent with the microscopic picture in which there is a

unique Fworld.

Now let us try to understand the 11-dimensional description of this configuration. The

M-theory lift is again a Taub-NUT geometry, with nonzero four form flux turned on:

F (4) = ωNUT ∧
∑

pAαA. (5.2)

ωNUT here is the unique self-dual harmonic two form on Taub-NUT space [12], and αA is

a basis for harmonic Calabi-Yau two-forms. This flux sources D2 charge via the coupling
∫

C(3) ∧ F (4) ∧ F (4), yielding qA = 3pBpCDABC as in (5.1). There is a nonzero Poynting

vector corresponding to the momentum along the M-theory circle. From the 4D point of

view this is interpreted as D0 charge q0 = −pApBpCDABC as in (5.1). So, by turning

on F (4) as in (5.2), we produce a configuration with p0 = 1, arbitrary D4 charges, but

predetermined D2-D0 charges and no entropy.

To get a configuration with arbitrary D2-D0 charges, we now insert a 5D spinning

black hole with charges q5D
A and angular momentum J3

L in the middle of this Taub-NUT-

flux configuration. The exact solution can be found in [2]. This yields a configuration with

asymptotic 4D charges

(1, pA, 3pApBDABC + q5D
A ,−pApBpCDABC − pAq5D

A + 2J3
L) . (5.3)

Notice the extra shift in D0 brane charge coming from placing the charged 5D black hole

in the nontrivial magnetic four form field. This is a higher dimensional generalization of

Dirac’s observation that a static electric charge in a magnetic field carries angular momen-

tum.

Now we wish to identify the partition function of the 4D black hole with that of the

spinning 5D black hole. 5D black holes doesn’t carry pA charge, so in order for this to be

correct it must be the case that, for the special values of charges given in (5.3), the index

Z4D is independent of pA. This can be seen as a consequence of symplectic invariance, as

follows.

The index Z4D is naturally a function of CXΣ = pΣ + iφΣ

π [1]. For a cubic prepotential

p0 = 1 and pA = 0, the electric potentials φΣ are determined from the charges by

q0 = −Im
CDABCXAXBXC

(X0)2
= Re

DABCφAφBφC

π(π + iφ0)2
, (5.4)

qA = 3Im
CDABCXBXC

X0
= −3Im

DABCφBφC

π(π + iφ0)
. (5.5)

Now consider the symplectic transformation

CX ′0 = CX0 , CX ′A = CXA + pACX0 , (5.6)

– 6 –
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under which Z4D is presumed invariant.5 For the values of the moduli under consideration

this results in

X ′0 = 1 + i
φ0

π
, CX ′A = pA + i

(

φA

π
+ pA φ0

π

)

. (5.7)

Comparing with (5.4) we see that the new charges are related to the old ones by

q′0 = −Im
CDABCX ′AX ′BX ′C

(X ′0)2
= q0 − pAqA − DABCpApBpC , (5.8)

and

q′A = qA + 3DABCpBpC . (5.9)

Taking (qA, q0) = (q5D
A , 2J3

L), this shift agrees exactly with that encountered in (5.3).

Therefore we can use a symplectic transformation to shift from pA = 0 to arbitrary nonzero

pA and Z4D remains unchanged. Physically this corresponds to the fact that putting a 5D

spinning black hole in a background F (4) shifts some charges but does not change the

number of microstates.

5.2 p0 > 1

A similar analysis holds for p0 > 1. The asymptotic charges (5.3) for a spinning black hole

become
(

p0, pA,
3

p0
pApBDABC + q5D

A ,− 1

(p0)2
pApBpCDABC − pAq5D

A

p0
+ 2J3

L

)

. (5.10)

pA can then be shifted away as before via the symplectic transformation

CX ′0 = CX0 , CX ′A = CXA +
pA

p0
CX0 . (5.11)
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A. Supergravity solutions of spinning black hole in Taub-NUT space

The Killing spinor equation of N = 2 5D supergravity is
[

d +
1

4
ωabΓ

ab +
i

4
√

3
ea(Γbc

aFbc − 4ΓbFab)

]

ε = 0 (A.1)

where ea are the frame 1-forms and ωab is the spin connection. The metric for the super-

symmetric spinning black hole in Taub-NUT space is [2]

ds2 = −
(

1 +
Q̃

Rr

)−2 (

dt +
J̃a

p0R2

)2

+

(

1 +
Q̃

Rr

)

ds2
TN (A.2)

5In principle it might transform as a modular form, but this would not affect the leading order compu-

tation given here.
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where

a =

(

1 +
p0R

r

)

(dx11 + p0 cos θdφ) − dx11 (A.3)

and x11 ∼ x11+4π. R is the asymptotic radius of the Taub-NUT space and the graviphoton

field

F =

√
3

2
d

[

(1 +
Q̃

Rr
)−1

(

dt +
J̃a

p0R2

)]

(A.4)

Similarly to the calculation of [13], the Killing spinor equations are solved by

iΓ0ε = ε (A.5)

and the self-duality of da and of the spin connection of Taub-NUT space.

With a redefinition of variable r = ρ2/R, in the limit R → ∞, the solution (A.2)

becomes

ds2 = −
(

1 +
Q̃

ρ2

)−2 [

dt +
J̃

ρ2
(dx11 + p0 cos θdφ)

]2

+ 4p0

(

1 +
Q̃

ρ2

)

(

dρ2 + ρ2dΩ̃2
3

)

(A.6)

where

dΩ̃2
3 =

1

4

[

dθ2 + sin2 θdφ2 +
1

(p0)2
(dx11 + cos θdφ)2

]

(A.7)

is the metric on the unit S3/Zp0 . (A.6) is nothing but a spinning black hole at the center

of the orbifold space C2/Zp0. Note that the area of the black hole horizon is independent

of R, and is given by

A = 16π2
√

p0Q̃3 − (p0J̃)2 (A.8)

Q̃ and J̃ are related to the standard normalized 5D charges Q,J [4] by a rescaling,

Q = 2π2/3Q̃ , J = 2
√

2πJ̃ . (A.9)
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